北京大学,最新Nature,博士生为共同一作,终结170多年的学术争论

2024-05-23
13:17:58
0
3500
冰表面与许多物理和化学性质密切相关,如融化、冻结、摩擦、气体吸收和大气反应。尽管进行了大量的实验和理论研究,但由于脆弱的氢键网络和复杂的预融过程,冰界面的确切原子结构仍然难以捉摸。

2024年5月22日,北京大学江颖、徐莉梅、王恩哥及田野共同通讯在Nature 在线发表题为“Imaging surface structure and premelting of ice Ih with atomic resolution”的研究论文,该研究利用基于qPlus的冷冻原子力显微镜和一个一氧化碳功能化的尖端,实现了六方水冰(冰Ih)的基本(0001)表面结构的原子分辨率成像。总之,该研究发现冰表面在零下153摄氏度就会开始融化,并结合理论计算揭示了该过程的微观机制,结束了有关冰表面预融化问题长达170多年的争论。



在传统的观点中,晶体冰表面被简单地认为是一个从体块截断的平面,没有任何重建。然而,众所周知,固体表面上的原子倾向于重新排列以最小化表面能。在冰表面是否存在类似的重构,以及质子的排列顺序如何,仍然是难以捉摸的。此外,冰表面甚至可以在低于整体融化温度的情况下融化,这与长期以来一直存在争议的所谓预融化过程相对应。只有在对最稳定冰表面的微观性质有了清晰认识的基础上,才能进一步探索表面预融的起源和机制。

用晶体学方法已经很好地测定了不同相的大块冰的结构。相比之下,探测冰表面的要求要高得多,主要依靠表面敏感衍射和光谱技术,如低能电子衍射、氦原子散射、X射线吸收光谱和和频产生光谱。即使有一些迹象表明最外层与体结构不同,由于空间分辨率和空间平均效应较差,这些方法也无法解决冰表面和预熔结构的纳米尺度或原子非均匀性。

虽然高分辨率扫描隧道显微镜(STM)可以用来确定少数层冰膜的形态和结构,但由于其绝缘性质,STM无法接近大块冰。非接触式原子力显微镜(AFM)也被应用于探测真实空间中的冰表面。然而,由于尖端对脆弱的氢(H)键结构的干扰以及难以进入近程力区,在冰面上实现原子分辨率是具有挑战性的。有研究表明,冰面上悬空的氢键可能被短程重建,但冰面上氢键网络的详细拓扑结构尚未确定。


六方冰(0001)表面Ih-和Ic -层畴的边界结构(图源自Nature)

该研究发现晶体冰-Ih表面由混合Ih和立方(Ic)堆叠纳米畴组成。密度泛函理论表明,通过减小悬空氢氧根键之间的静电斥力,这种重构表面在理想冰面上保持稳定。此外,随着温度的升高(高于120开尔文),冰表面逐渐变得无序,这表明预融化过程的开始。表面预熔发生在Ih和Ic畴之间的缺陷边界处,可以通过形成平面局部结构来促进表面预熔。这些结果结束了长期以来关于冰表面结构的争论,并揭示了冰预融的分子起源,这可能导致对冰物理和化学理解的范式转变。

北京大学物理学院量子材料科学中心2018级博士研究生洪嘉妮(现为北京大学物理学院博士后,入选中国博士后创新人才支持计划)、2016级博士研究生田野(现为北京大学物理学院特聘研究员)、2020级博士研究生梁天成和2020级博士研究生刘心萌为文章的共同第一作者,江颖、徐莉梅、田野和王恩哥为文章的共同通讯作者。其中洪嘉妮、田野、刘心萌、江颖主要贡献为扫描探针实验,梁天成、潘鼎、徐莉梅、王恩哥主要贡献为第一性原理计算和模拟。上述工作得到了国家自然科学基金委、科学技术部、教育部、北京市科学技术委员会、北京市发展和改革委员会和新基石科学基金会的经费支持。

原文链接:

https://www.nature.com/articles/s41586-024-07427-8


来源:北京大学、Nature。内容仅做学术分享之用,版权归原作者所有,若涉及侵权等行为,请联系我们删除,万分感谢!